
CS

331

Class 09 Guide:
Polymorphism

Preconditions
• Students are familiar with inheritance

and arrays.
• Students have worked with a poorly

written program in A08 that could
benefit from polymorphism.

• Students have read Chapter 12 of the
text.

Postconditions
• Students have seen polymorphism at

work and have seen the results of not
using it.

Context
• A08 should be a program that is

seriously butchered and could really
benefit from using polymorphism.

Supporting Programs
• cs133/W09/Dancers: dancing robot

examples. Note that this project has
several main methods.

• cs133/W09/Accounts: a poorly written
program that they have worked with for
A08.

Instructortions
Byron usually gets through this with 20
minutes to spare. Suggestions:

• move some of the practicum material
to lecture

• add some material on polymorphism
via interfaces as prep for GUIs.

Table of Contents
1 Review Inheritance and Overriding (20

min)
2 A Polymorphic Example: Dancing

Robots (30 min)
2.1 LeftDancers and RightDancers
2.2 Polymorphic Variables
2.3 Using an Array
2.4 Using Methods Unique to a Subclass

3 Designing with Inheritance (30 min)
3.1 A Poor Design
3.2 Using Polymorphism

3.2.1 Changes to Withdraw in Bank class
3.2.2 Changes to findAccount in Bank
class
3.2.3 Changes to add a new kind of
Account

4 Summary

Class 09 Guide: Polymorphism 8/24/2004 Page 1

1 Review Inheritance and Overriding (20 min)
In this lecture we’ll make a lot of use of “dancing robots”. A LeftDancer “dances” to the left
whenever it’s told to move:

end

start

Draw this on the board or, better yet, act it out.
To do this, the move method is overridden. Let’s take a few minutes to review overriding.

O

ve
rr

id
in

g
M

o

import becker.robots.*;

/** A robot which “dances" towards the left.
@author Byron Weber Becker*/
public class LeftDancer extends RobotSE
{ public LeftDancer(City c, int ave, int str, int dir)
 { super(c, ave, str, dir);
 }

 public void move()
 { this.turnLeft();
 super.move();
 this.turnRight();
 super.move();
 this.turnRight();
 super.move();
 this.turnLeft();
 }

 public void pirouette()
 { this.turnLeft(4);
 }
}

ve

Inheritance and overriding were
a long time ago. Take time to
discuss:

• RobotSE and
LeftDancer inherit
pickThing (and other
stuff) from Robot.

• RobotSE and
LeftDancer inherit
curAve and curStr to
keep track of where they
are in the city.

• RobotSE adds several
new methods.

• LeftDancer replaces the
normal definition of move
with a new one.

• We can have methods with the same name.

• Same name, different parameters “overload”. The correct one is picked based on the
parameters passed when you call it.

• Same name, same parameters “override”. Can only override a method of a superclass.
Can’t have two methods in the same class with exactly the same signature.

Answers to the questions in the yellow box are on the next page.

Class 09 Guide: Polymorphism 8/24/2004 Page 2

So, what is the answer to this.move() vs. super.move()?
Suppose we have the following code. Which move() method is executed?

LeftDancer ld = new LeftDancer();
…
ld.move();

• Begin searching for the method in the object’s class (the thing after the “new”). If it’s
there (it is), use it. If not, check the superclass. If there, use it. If not, check the
superclass…
• This is exactly the same as we’ve been doing for a long time.

• Now look at the method body—it calls “super.move()”. This begins the same search
process for a method named “move()” except that the search begins with the superclass
of the class containing the call. Thus “super.move()” will execute the method in Robot.

Suppose we call ld.move(5). This will invoke the move method in RobotSE. It contains a call to
move()—no parameters. Which move() method will it use?

• If the call is to this.move() or just plain move() the search will begin with the
LeftDancer class since the robot object executing the code is a LeftDancer.

• If the call is to super.move() then the search will begin with the Robot class (the
superclass of the class containing the code that’s executing)—and use the plain old
familiar move() method.

A common question is: “Suppose I’ve got a LeftDancer robot. How do I call the plain old move
method in Robot?”
Answer:

• According to the rules I’ve just given, you can’t. The only way out is to create a new
method with a different name (say, “oldMove()”) and have that method call
super.move().

• If you really need to access the overridden method like that, it probably means you
should not have overridden the method in the first place.

Another question: “Suppose I’ve written a class and I want to make sure that no one overrides
one of the crucial methods. What can I do?”
Answer: Include the keyword “final” in the method’s signature. This indicates that the body
given is the final body—it can’t be overridden. There are some analogies to constants here.

Class 09 Guide: Polymorphism 8/24/2004 Page 3

2 A Polymorphic Example: Dancing Robots (30 min)
Programs to support this section are in the Dancers project. The project actually includes 6
examples—Example0.java, Example1.java, Example2.java, etc. Only examples 1 to 4 are
referred to in the slides. When running the example, be sure to select the correct java file before
hitting “run”.

2.1 LeftDancers and RightDancers

Ex

1:
 P

ro
gr

am
 D

es
ig

n Robot

+void move()
+void turnLeft()

RobotSE

+void turnRight()
+void turnRight(int numTimes)
+void turnLeft(int numTimes)
+void move(int howFar)

LeftDancer

+void move()
+void pirouette()

RightDancer

+void move()
+void pirouette()

Example1

+void main(...)

Show inheritance
with:

Show composition
(uses) with:

Code on the next page….

Class 09 Guide: Polymorphism 8/24/2004 Page 4

Le
ftD

an
ce

rs
 a

nd
 R

ig
ht

D
an

ce
rs

import becker.robots.*;

/** A robot which "dances" towards the left.
@author Byron Weber Becker*/
public class LeftDancer
 extends RobotSE
{ //constructor omitted for brevity
 public void move()
 { this.turnLeft();
 super.move();
 this.turn

();
 super.move();
 this.turn ();
 super.move();
 this.turnLeft();
 }

 public void pirouette()
 { this.turnLeft(4);
 }
}

import becker.robots.*;

/** A robot which "dances" towards the right.
@author Byron Weber Becker*/
public class RightDancer
 extends RobotSE
{ //constructor omitted for brevity
 public void move()
 { this.turn ();
 super.move();
 this.turnLeft();
 super.move();
 this.turnLeft();
 super.move();
 this.turn ();
 }

 public void pirouette()
 { this.turn (4);
 }
}

This should all be familiar
ground. Everyone should be able
to read this program and have no
issues about what it does.
However, run the program, just
so everyone can clearly visualize
it..

Right

Right

Right

Right

Right

Ex

1:
 D

an
ci

ng
 R

ob
ot

import becker.robots.*;

public class Example1 extends Object
{ public static void main(String[] args)
 { City danceFloor = new City();
 LeftDancer ld = new LeftDancer(danceFloor, 1, 4, Directions.NORTH);
 RightDancer rd = new RightDancer(danceFloor, 2, 4, Directions.NORTH);
 CityFrame f = new CityFrame(danceFloor, 4, 5);

 for (int i=0; i< 4; i++)
 { ld.move();
 rd.move();
 }

 ld.pirouette();
 rd.pirouette();
 }
}

s

Class 09 Guide: Polymorphism 8/24/2004 Page 5

2.2 Polymorphic Variables
Ex

. 2
: P

ol
ym

or
ph

ic
 V

ar
ia

bl
es

 import becker.robots.*;

public class Example2 extends Object
{ public static void main(String[] args)
 { City danceFloor = new City();

 Robot ld = new LeftDancer(danceFloor, 1, 4, Directions.NORTH);
 Robot rd = new RightDancer(danceFloor, 2, 4, Directions.NORTH);
 CityFrame f = new CityFrame(danceFloor, 4, 5);

 for (int i=0; i< 4; i++)
 { ld.move();
 rd.move();
 }

 ld.pirouette();
 rd.pirouette();
 }
}

The only difference between
Example 1 and Example 2 is
substituting Robot for
LeftDancer and RightDancer in
the declarations of ld and rd.
Difference highlighted in blue
on the slide.

So, what difference does this change make? Possibilities:
• Might be a compile-time error because the types (Robot and LeftDancer) don’t match.
• Might be a compile-time error because Robots don’t know how to pirouette.
• Both robots may do a simple move—no going off to the right or left.
• The LeftDancer might still dance to the left and the RightDancer dance to the right.

Get student input/guesses. Then compile the program and get the compile-time error. Comment
out the calls to pirouette and then compile only (Ctrl-F9 will compile without running).
• A Robot doesn’t have a pirouette method. The compiler thinks ld is a Robot and so it

limits it to the things that a Robot can do. No pirouetting!
• Thanks to inheritance a LeftDancer is a kind of Robot. It knows how to move, turn left and

pick up things—therefore it can be assigned to a Robot reference.

• The type of the reference (ld) determines the

names of methods which can be called.

Have the students guess what the robots will do when you run it. Simple move or complex move?
Run the program.
• The object knows that it’s a special kind of Robot—one that moves in a special way. When

it’s told to move, it does it in that special way.

• The type of the object determines which method is

actually executed.

Polymorphism: One message (e.g.: move) can
execute many ways, each one specialized to the object
that receives it.

Class 09 Guide: Polymorphism 8/24/2004 Page 6

2.3 Using an Array
This is almost exactly like the previous slide except that we use an array to store the references.

Ex

. 3
: U

si
ng

 a
n

A
rr

ay
 public class Example3 extends Object

{ public static void main(String args[])
 { City danceFloor = new City();

 Robot[] chorusLine = new Robot[4];
 for(int i=0; i<chorusLine.length; i++)
 { if (i%3 == 0)
 chorusLine[i] = new LeftDancer(danceFloor, 1+i, 4, Directions.NORTH);
 else if (i%3 == 1)
 chorusLine[i] = new RightDancer(danceFloor, 1+i, 4, Directions.NORTH);
 else
 chorusLine[i] = new Robot(danceFloor, 1+i, 4, Directions.NORTH);
 }

 for(int i=0; i<4; i++)
 { for(int j=0; j<chorusLine.length; j++)
 { chorusLine[j].move();
 }
 }

 }
}

This is an important point…
This is cool because now we have one array holding different kinds of objects. Those objects can
all receive the same messages (eg: chorusLine[j].move()) but respond in different ways.

Think carefully: where would you just loved to have had this capability recently?
• In A08 they were asked to work with a program that manages several different types of bank

accounts. It had one array for MinBalAccount and another array for PerUseAccount. With
polymorphism, they could have all been stored in the same array.

Class 09 Guide: Polymorphism 8/24/2004 Page 7

2.4 Using Methods Unique to a Subclass
But what about the pirouette method in the LeftDancer and RightDancer classes? How can
we use it if we have our array declared to be Robot[]? The array might hold Robots capable of
pirouetting—how can we make them do it without getting a compile-time error?

Ex

. 4
: M

et
ho

ds
 U

ni
qu

e
to

 a
 S

ub
cl

as
s // Identical to Example 3 up to here.

 // Make them dance
 for (int i=0; i<4; i++)
 { for(int j=0; i< chorusLine.length; i++)
 { chorusLine[j].move();
 }
 }

 // End with a pirouette (if able)
 for(int i=0; i<chorusLine.length; i++)
 {

 }
 }
}

if (chorusLine[i] instanceof LeftDancer)
{ LeftDancer lefty = (LeftDancer)chorusLine[i];
 lefty.pirouette();
}

Similarly for the RightDancer. This indicates that perhaps we ought to have a class of Robot
named Dancer. We could then check if chorusLine[i] instanceof Dancer and cast to a
Dancer reference.

Review casting briefly—it’s your promise that you’ve checked things out. chorusLine[i] really
is a LeftDancer and it’s OK to assign it to a LeftDancer reference. But Java will check when it
runs—just to make sure that you didn’t lie!

Warning: students often over-use instanceof. If you’re often asking an object what kind of
object it is so you can do the right thing, it’s a sign that maybe the object itself should be doing
it.
In this example it might be better to define a Dancer class that has an empty pirouette method.
Then you can call pirouette for every robot in the array and some just won’t do anything.
If you have time, sketch a class diagram with a Dancer class.

Class 09 Guide: Polymorphism 8/24/2004 Page 8

3 Designing with Inheritance (30 min)

3.1 A Poor Design
This is taken from A08. If that assignment changes, so should this. Students by now should have
pretty direct experience with the program.

A
cc

ou
nt

s:
 A

 P
oo

r D
es

ig
n

Bank

-MinBalAccount[] mbAccts
-PerUseAccount[] puAccts
...
+Bank()
-MinBalAccount findMinBalAccount(

int acctNum)
-PerUseAccount findPerUseAccount(

int acctNum)
+void deposit(int acctNum, double amt)
+void withdraw(int acctNum, double amt)
-void addTrans(int acctNum, double amt,
 double balance)
...

MinBalAccount

+double balance
+boolean balBelow
+int acctNum
+MinBalAccount(...)
+void deposit(double amt)
+void withdraw(double amt)
+void transfer(double amt,

MinBalAccount toAccount)
+void transfer(double amt,

PerUseAccountt toAccount)

PerUseAccount

+double balance
+int numWithdraws
+int acctNum
+PerUseAccount(...)
+void deposit(double amt)
+void withdraw(double amt)
+void transfer(double amt,

MinBalAccount toAccount)
+void transfer(double amt,

PerUseAccount toAccount)

UI

-Bank bank
-TextInput in
+UI(Bank aBank)
+void eventLoop()

*

*

There are two different kinds of
accounts, one where users need
to maintain a minimum balance
and the other where users pay a
per-use fee. The Bank object
keeps two arrays—one for each
type of account. This presents
problems, as illustrated in the
deposit method below.

A

cc
ou

nt
s:

 C
od

e
Fr

om
 A

 P
oo

r D
es

ig
n public class Bank extends Object

{ private MinBalAccount[] mbAccts;
 private PerUseAccount[] puAccts;
 …
 public void deposit(int acctNum, double amt)
 { // Look for this account in the list of min balance accounts. If there, do the deposit.
 MinBalAccount mba = this.findMinBalAccount(acctNum);
 if (mba != null)
 { mba.deposit(amt);
 this.addTrans(acctNum, amt, mba.balance);
 } else
 { /* Wasn’t in the min balance accounts list. Look in the per-use accounts list. If
 there, do the deposit. */
 PerUseAccount pua = this.findPerUseAccount(acctNum);
 if (pua != null)
 { pua.deposit(amt);
 this.addTrans(acctNum, amt, pua.balance);
 } else
 { System.out.println("Account " + acctNum + " not found.");
 }
 }
 }

The design results in code that is
repeated, the only real difference
being due to the types.

In their assignment they consider
the changes required to add still
another kind of account,which
makes this effect even worse.

Class 09 Guide: Polymorphism 8/24/2004 Page 9

3.2 Using Polymorphism

A
D

es
ig

n
U

si
ng

 P
ol

ym
or

ph
is

m

Bank

-Account[] accts
-int numAccts
+Bank(String accountFileName)
+void deposit(int acctNum, double amt)
+void withdraw(int acctNum, double amt)
-Account findAccount(int acctNum)
-void addTrans(int acctNum, double amt,
 double balance)

Account

-double balance
-int accountNum
+Account(...)
+void deposit(double amt)
+void withdraw(double amt)
+void transfer(double amt, Account toAcct)
+void chargeServiceFee()
+double getBalance()
+int getAccountNum()

UI

-Bank bank
-TextInput in
+UI()
+void eventLoop()

*

MinBalAccount

-boolean balBelow
+MinBalAccount(...)
+void withdraw(...)
+void chargeServ...

PerUseAccount

-int numWithdraws
+PerUseAccount(...)
+void withdraw(...)
+void chargeServ...

We’ll show the design and how it
affects the Bank class here. We’ll
make the changes to the
Accounts in Practicum.

3.2.1 Changes to Withdraw in Bank class

C

od
e

U
si

ng
 P

ol
ym

or
ph

is
m

 public class Bank extends Object
{ private Account[] accts;
 private int numAccts;
 …
 public void withdraw(int acctNum, double amt)
 {

Every Account, whether it’s a
MinBalAccount or a
PerUseAccount is guaranteed to
have a withdraw method. So we
can put them all into the same
array, have just one
findAccount method, and call
the withdraw method on
whatever kind of account
findAccount returns.

Account a = this.findAccount(acctNum);
if (a != null)
{ a.withdraw(amt);
 this.addTrans(acctNum, amt, a.getBalance());
} else
{ System.out.println(“Account “ + acctNum + “ not found.”);
}

}

Class 09 Guide: Polymorphism 8/24/2004 Page 10

3.2.2 Changes to findAccount in Bank class
The original program contained two methods to find an account, given the account number. One
method searched an array of MinBalAccount objects while the other searched an array of
PerUseAccount objects. With polymorphism we can put both kinds of accounts into a single
array and have just one method to search.
No matter which kind of account it finds, it is an Account object and can be returned by the
method.
All accounts have a getAccountNum method that can be called.

M

or
e

C
od

e
U

si
ng

 P
ol

ym
or

ph
is

m
 public class Bank extends Object

{ private Account[] accts;
 private int numAccts;
 …

 private Account findAccount(int acctNum)
 { int i = 0;
 while (true)
 { if (i >= this.numAccts)
 { return null;
 } else if (this.accts[i].getAccountNum() == acctNum)
 { return this.accts[i];
 } else
 { i++;
 }
 }
 }

 …
}

3.2.3 Changes to add a new kind of Account

A

dd
in

g
M

th
F

What changes are needed in Bank to add a monthly fee account?

ee
A

cc
t

Bank

-Account[] accts
-int numAccts
+Bank(String accountFileName)
+void deposit(int acctNum, d... amt)
+void withdraw(int acctN..., d... amt)
-Account findAccount(int acctNum)

Account

-double balance
-int accountNum
+Account(...)
+void deposit(double amt)
+void withdraw(double amt)
+void transfer(double amt, Account toAcct)
+void chargeServiceFee()
+double getBalance()
+int getAccountNum()

UI

-Bank bank
-TextInput in
+UI()
+void eventLoop()

*

MinBalAccount

-boolean balBelow
+MinBalAccount(...)
+void withdraw(...)
+void chargeServi...

MthFeeAccount

+MthFeeAccount(...)
+void chargeServi...

PerUseAccount

-int numWithdraws
+PerUseAccount(...)
+void withdraw(...)
+void chargeServi...

What changes would be needed
to the Bank class to add a new
kind of account? Probably none!

Class 09 Guide: Polymorphism 8/24/2004 Page 11

4 Summary

Su
m

m
ar

y Polymorphism…
• is when objects respond to the same message (method name) in different

ways, depending on their type.
• is implemented by extending a class with two or more subclasses. The

methods in the superclass may be overridden by subclasses to respond
differently.

• can substantially simplify programs, making them easier to read, write,
understand, test, debug, and change.

Class 09 Guide: Polymorphism 8/24/2004 Page 12

	Review Inheritance and Overriding (20 min)
	A Polymorphic Example: Dancing Robots (30 min)
	LeftDancers and RightDancers
	Polymorphic Variables
	Using an Array
	Using Methods Unique to a Subclass

	Designing with Inheritance (30 min)
	A Poor Design
	Using Polymorphism
	Changes to Withdraw in Bank class
	Changes to findAccount in Bank class
	Changes to add a new kind of Account

	Summary

